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Abstract

The discrete mathematical representations of graph theory, augmented by theorems of matroid theory, were found to have elements and
structures isomorphic with those of many different engineering systems. The properties of the mathematical elements of those graphs and the
relations between them are then equivalent to knowledge about the engineering system, and are hence termed “embedded knowledge”. The
use of this embedded knowledge is illustrated by several examples: a structural truss, a gear wheel system, a mass-spring-dashpot system and
a mechanism. Using various graph representations and the theorems and algorithms embedded within them, provides a fruitful source of
representations which can form a basis upon which to extend formal theories of reformulation.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

When a human analyses or synthesizes an engineering
system by using the mathematical representation governing
its behavior, he or she creates a mathematical model of the
engineering system, then manipulates the equations using
knowledge about them and their relation with the physical
reality. In usual engineering practice, one uses a model that
is known to be suitable for the system at hand and the aim of
the computation. Reformulation of the problem into another
formally understood mathematical system [1,2] to the extent
that it is done for engineering analysis, usually uses conti-
nuum mathematics. This paper shows that representations of
graph theory for engineering problems can be useful as a
basis upon which to extend formal theories of reformula-
tion.

Research in engineering analysis usually starts with an
understanding of the physical system, then the adoption of a
suitable mathematical model for the system. In the work
reported here a different approach was adopted. Rather
than starting with the physical system itself or the mathe-
matical representations historically used for the behavior of
engineering systems, many other mathematical approaches
were investigated to find those which can be useful repre-
sentations of engineering systems. Representations were

sought for which knowledge of the mathematical properties
of those representations and the relations between them can
be used to provide augmented understanding of the physical
engineering system. For instance, if two engineering
systems can be represented by graphs which are known to
be dual, then the physical systems are dual, and this in turn
leads to new insights regarding analogies between the
systems. Section 7 shows how one can infer the behavior
of a mechanism from properties of its dual truss. The
Embedded Engineering Knowledge project was devoted to
searching for representations isomorphic with one or more
engineering systems, and finding common properties, if they
exist, between them. After investigating many mathematical
alternatives, attention was focused on graph theory, matroid
theory and discrete linear programming. This paper illus-
trates the approach using results only from the graph theory
representation, augmented by theorems from matroid
theory.

Graph theory is a useful representation because on the
one hand the elements of the graph can be defined so as to
have a one-to-one correspondence with the elements of
many kinds of engineering systems. On the other hand,
the theorems and algorithms of graph theory allow one
also to represent behavioral properties of the system, such
as deformations and forces, or velocities and movements, as
properties of the vertices or edges of the graph. This paper
illustrates how engineering problems, for example: truss
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structures, planetary gear systems and dynamic mass-
spring-dashpot systems are mapped into graphs, and then
analyzed by using the theorems and algorithms of graph
theory; these theorems and algorithms constitute knowledge
that is embedded in the graph theory. These representations
have been sporadically used for solving engineering
problems, but to the best of our knowledge have never
been brought together as a whole for dealing with engineer-
ing systems.

This approach enables one to apply efficient algorithms.
An example is the derivation, from the embedded knowl-
edge, of an efficient algorithm for analyzing indeterminate
trusses. Sometimes one deduces implicit knowledge that
was not known even to human experts. This will be
explained by showing the dual relation between determinate
trusses and mechanisms, engineering problems that seem
today to belong to different domains, but discovered to be
dual by using this approach. Another example of such a
previously unexplored relation, given in the paper, shows
the analogy between analysis of indeterminate trusses and
dynamic systems.

This paper is organized as follows. Section 2 discusses
the importance of representations in general. Section 3
shows some of the general properties of graphs necessary
to follow the work. Section 4 shows use of the graph repre-
sentation for structural trusses, Section 5 for planetary gear
systems and Section 6 shows, briefly, application to other
engineering systems. Section 7 shows how, by understand-
ing the duality property of a graph, a new analogy between a
structural truss and a mechanism was discovered, with
which one can reason. Section 8 gives some concluding
remarks.

2. Representations

In order to reemphasize the importance of representa-
tions, we use the well-known terminology and explanations
of Simon about representation for engineering design [3].
To clarify and demonstrate the influence of problem repre-
sentation on design, Simon used the game called number
scrabble.

Number scrabble is played with nine cards, valued from
one to nine. The cards are placed in a row, face up, between
the two players. The players select, alternately, any one of
the cards that remain in the center. The aim of the game is
for a player to make up a “book”, that is, a set of exactly
three cards whose spots add to 15, before his opponent can
do so. The first player who makes a book wins; if all nine
cards have been drawn without either player making a book,
the game is a draw.

Simon [3] shows how a change in representation makes it
easy to find the solution. He uses the magic square, which is
made up of the numerals from one to nine (as shown in Fig.
1).

Each row, column or diagonal sums up to 15, and every
winning triple of the game is a row, column, or diagonal of
the magic square. From this, it is obvious that “making a
book” in number scrabble is equivalent to getting “three in a
row” in the game tic-tac-toe. As Simon [3] points out, as
many people know how to play tic-tac-toe well, they can
transfer their tic-tac-toe knowledge to number scrabble.

Korf [2] reviewed a number of alternative representations
which had been proposed for various problems including the
tic-tac-toe problem mentioned earlier, and showed how they
may be generalized into a more formal system. This paper
gives some previously unexplored representations for engi-
neering systems, which can be usefully generalized.

As in the number scrabble example, when changing the
representation enables people to transfer their tic-tac-toe
strategy to number scrabble, in the examples in this paper
the engineering problem is changed to a graph theory repre-
sentation. One can then use the many known graph theory
algorithms and theorems that have been developed by
researchers in the field.

The formalization of a more general reformulation theory
in Artificial Intelligence was preceded by a period in which
many people suggested particular isomorphic representa-
tions of particular problems or puzzles [2]. Eventually, we
expect that the representations shown here, and others, will
be combined into a theory for more generalized reformula-
tion of representations of engineering systems. In a
summary of the Second Workshop on Change of Represen-
tation and Problem Reformulation [4] it was stated that “the
field of representation change does not have a solid theore-
tical foundation yet”. We believe that the approach
presented here will help to advance theory of reformulation
for engineering systems. Moreover, proceeding in this direc-
tion presents the possibility of deriving new mathematically
proven connections between different engineering fields, an
example of which is shown in Section 7.

3. Graphs as representation of engineering systems

An engineering system is usually represented as a
diagram, with nodes, lines, and words or numbers which
assign values to some or all nodes or lines. For instance, it
is common to use a diagram to show a truss, or a mechan-
ism, or a gear system, or electrical circuit, or a mass-spring-
dashpot oscillator. The elements of the diagram are syntax
symbols, and the diagram itself is considered to be a
sentence which describes the system. Following mathema-
tical tradition, the work should be done in two parts.

1. Check whether the problem is well defined and hence
solvable. In the words of logic, check that the syntax of
the engineering system being dealt with, in other words,
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its diagrammatic representation, is a Well-Formed
Formula (WFF). This question is usually dealt with in
a cursory fashion in engineering work. Attention is
immediately focused on the numerical mathematical
formula to be applied to a problem, with no systematic
attention paid to whether the system is correctly defined.
For instance, as will be shown later, the rule often used to
determine if a truss structure is just-stiff, is not a
complete solution to that question. However, when view-
ing the truss as a graph, this question has a proven algo-
rithmic solution, as shown in Section 4.

2. Before proceeding into the analysis effort, ensure that the
solution will require as low a computational effort as
possible. This is of less practical importance for small
systems, but is very important for large systems with
many components. This subject is usually dealt with by
heuristic rules of thumb, known as expert domain knowl-
edge. When using the graph theory representation of the
engineering system, it can often be dealt with using
mathematically proven algorithms of graph theory rather
than man-made heuristic rules.

In this paper it is assumed that the reader has a basic
knowledge of graph theory.

3.1. Network graphs

A graph is defined by the ordered pairG� kV,El, whereV
is the vertex set andE the edge set, and every edge is defined
by its two end vertices. If each edge in the graph has a
direction, the graph is known as a directed graph. If the
directed graph is a network graph, each edge and vertex
has properties of flow and potential, respectively.

As for logic, where the Conjunctive Normal Form (CNF)
is a special representation of predicate calculus and Robin-
son [5] found an embedded algorithm for that special repre-
sentation, in this paper three special graph theory
representations are described and their embedded properties
used. Central to understanding these graphs is a particular
type of graph called a tree. Atree is a connected graph with
no circuits. There are many properties and theorems
embedded in this graph. A few that are used in this paper
are shown:

Proposition 1. The relation between the number of
verticesv and edgese of a tree is fixed, given by

e�T� � v�T�2 1:

Proposition 2. There is one and only one path between
any two different vertices.

A spanning tree is a subgraph of graphG which is a tree
and which includes all the vertices ofG but only a subset of

the edges. The edges of the tree are called branches, and the
edges not in the spanning tree are called chords.

In this paper, we define three different network graphs,
which have knowledge embedded in each. For convenience,
this paper uses a line-type attribute. These are:

A solid line
Representing an edge with an unknown value of flow or
potential difference at the current stage of the computation.
A bold line
Representing an edge for which the potential difference is
known.
A dashedline
Representing a chord, which is an edge not included in the
spanning tree, and if the flow value of the edge is known,
then it is both dashed and bold.
A doubleline
Representing a branch of a spanning tree.

To deal with these representations we need first to
develop the use of the cutset and circuit matrices. Given a
connected network graph, we assign arbitrary directions to
each edge, then find a spanning tree within it, thus defining
branches and chords in the graph. There are obviously many
spanning trees possible in the graph; the choice of a span-
ning tree does not effect the generality of this approach, but
can affect the computational effort needed for the algorithms
which later use that spanning tree.

When drawing an infinitely long curved line, which
passes through at least one edge but not through any
vertices, the graph is separated into two parts. Each such
infinite cut defines a set of edges, known as a cutset. When
the cutset includes only one branch of the spanning tree it is
called a fundamental cutset. This paper deals only with
fundamental cutsets, and for brevity they will be called
cutsets. Each will be labeled with the name of the branch
that defines it. The direction of the cutset is defined by its
branch direction, as shown in Fig. 2(a).

Thecutset matrixQ is a matrix of the graph obtained as
follows. The matrix hase(G) columns (corresponding to the
edges of the graph) and has rows corresponding to the
cutsets which in turn are defined by the branches. The index
i refers to the row andj to the column. Because the quantity
of cutsets is equal to the quantity of branches, the quantity of
rows is equal to the quantity of branches. The value of the
matrix element [Qij] may be 1 1, 0, or 2 1. It will be 1 1 if
edgej is included in the cutset which is defined by branchi
and is with the same orientation as the cutset,2 1 if it is
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with opposite orientation, and 0 if it is not included in the
cutset as shown in Fig. 2(b).

A circuit is a closed path and is called a fundamental
circuit if it includes only one chord and all the other edges
are branches. This paper deals only with fundamental
circuits, and for brevity they will be called circuits. A direc-
ted circuit is formed by traversing a chord in the direction of
its arrow, then finding a path back to the initial vertex, but
traversing any edge in that path only once, as shown for
instance in Fig. 3. As is immediately obvious from the defi-
nition, circuits are defined by chords.

The circuit matrix B, demonstrated in Fig. 3, hase(G)
columns as for the cutset matrix, and its rows correspond to
the circuits. The direction of each circuit is chosen to suit the
direction of the chord which defines it. Because each chord
defines a circuit, the number of rows is equal to the number
of chords of the spanning tree. The element [Bij] � 1 1 if
edgej is included in the circuit which is defined by chordi,
and is with the same orientation as the circuit,2 1 if it is
with opposite orientation, and 0 otherwise.

Every edge is assigned a value called theflow, which can
be a force, flow of liquid, money, goods or the like.1

Every vertex is assigned a value called thepotential.2 The
potential may represent a physical quantity such as dis-
placement, pressure or voltage, but it can also be used for
other attributes. For instance in the shortest path algorithm it
represents the lower bound of the distance (or the combined
weights of the edges) from the current vertex to the target
vertex [6].

3.1.1. Flow graph representation
Definition of the flow graph representation: A directed

graphG is a flow graph representation if the value of the
flow in each edge is independent of the potential difference
across that edge. The property of the flow graph representa-
tion that is used here is the Flow Law, which is stated as

The Flow LawThe vector sum of the flows in every cutset
of G is equal to zero.

This law may be recognized as a generalization of the
well-known Kirchhoff’s Current Law (KCL). Note that
KCL is restricted only to one dimension which is
appropriate for electrical circuits, while the flow law is
multidimensional and can be used for two or three

dimensions which are appropriate for trusses and other engi-
neering systems.

A graph and its spanning tree is shown in Fig. 2 while Fig.
7 shows a truss, its graph with spanning tree and its cutset
matrix.

The matrix form of the Flow Law is used in this paper,
written as

Q·~F � ~0 �1�
where~F is the vector of the flows, orFlow Vector.

To solve the flow graph using the flow law we need to
know the condition under which it can be solved.

Proposition 3 (The solvability condition). Let F repre-
sent the flows in the edges ofG and let dim(F(G)) be the
dimension of the coordinate system for the flow in the
elements. The dimension, which can in general be any inte-
ger value, is usually in practice one, two or three. One is for
a scalar problem, two is for a plane problem, and three for a
space problem.

If dim�F�G�� × �v�G�2 1� is equal to the quantity of
edges with unknown values of flow inE(G) then Gis solv-
able using only the flow law.

Proof. Each branch in the spanning tree defines a cutset in
G, and the sum of flows in each cutset in each coordinate
axis is equal to zero. Therefore, there are dim(F(G)) equa-
tions for each cutset, and as there arev(G) 2 1 cutsets, there
are dim�F�G�� × �v�G�2 1� equations. The equations are in
general independent because in each cutset there is at least
one edge (which is the branch that defines the cutset) that
belongs generally to this cutset and not to any other cutset.

3.1.2. Potential graph representation
Definition of a potential graph: Let G be a graph in

which for every vertex there will be associated a
number which represents the potential at the vertex. In
this representation the potential difference of the edge is
independent of the value of the flow in that edge. In
addition, every circuit satisfies the Potential Law, which is
stated as

The Potential Law: For every circuit in the graph, the
sum of the potential differences of the edges of the
circuit is equal to zero. In matrix representation this is
written as

B·~D � ~0 �2�
where ~D is the vector of the potential differences, or
Potential Difference Vector.

This law is a vectorial generalization to several dimen-
sions of KVL which is stated for a one dimensional or scalar
system.
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1 In control theory, this is called the “through variable”, but the word
“flow” is more suitable for the work reported here.

2 The potential difference between the vertices defining an edge is known
in control theory as the “across variable”.



Proposition 4 (The solvability condition). Let dim(G) be
the dimension of the graph and dr(G) be the number of
edges with known values. The relation between the number
of edgese and the number of verticesv of the graph must
then satisfy

e2 dr�G� � dim�G� × �e2 v 1 1�: �3�
Explanation: The quantity of independent circuits in a

graph is equal to the number of chords in any spanning
tree. As there arev 2 1 branches in a spanning tree, the
quantity of chords ise 2 (v 2 1), or e 2 v 1 1. For each
circuit there is one equation for each dimension, so the
number of equations is then dim�G� × �e2 v 1 1�: The
number of unknown variables (labeled as regular solid
edges) is the number of graph edges minus the edges with
known values, which is:e2 dr(G). In order to have a unique
solution for the analysis, Eq. (3) must be satisfied.

3.1.3. Resistance graph representation
Definition of a resistance graph: Let G be a graph in

which

• for every vertex there will be associated a number which
represents the potential at the vertex and

• for every edge there will be associated a number which
represents the flow in the edge.

In this representation the potential difference of the edge is
dependent on the value of the flow in that edge. The relation
between the potential differenceD(e) and the flowF(e) in
the edge is called the resistance of the edge, and is desig-
nated asR(e); the inverse relation is the conductivity of the
edge and designated asG(e). In addition, the flows and
potentials satisfy the Flow Law and Potential Law, respec-
tively. A linear relationship is common between the flow
and potential difference; it is termed Ohm’s Law in electri-
cal systems, or Hooke’s Law in structural systems.

Proposition 5 (orthogonality property). The cutset and
circuit subspaces of a graph are orthogonal and complemen-
tary to each other [7].

Explanation: In the terminology of matrices, this propo-
sition is written as follows:

B·Qt � 0: �4�
From Eq. (4) it can be proved [7] that the flows in the
branches are dependent on the flows in the chords according
to

~FT � Bt·~FC �5�
and the potential differences in the chords are related to the
potential differences in the branches by

~DC � Qt·DT: �6�

3.1.4. Line graph representation
Graph G is defined as a line graph of an engineering

system if every vertex ofG corresponds to an element,
and every edge to the connection between the corresponding
vertices.

In the special graphs described earlier, for every engi-
neering element there is a corresponding edge. In a line
graph, the element of the physical system is represented
as a vertex and the edge represents the connection between
the engineering elements.

This representation has no special properties as do the
others previously discussed, but it enables one to find
embedded properties of the engineering system which
exist in the connection between the elements, in cases
when these properties cannot be found by other representa-
tions. For example, in Section 5 the line graph represents a
planetary system, the properties of which cannot usefully be
represented by the three representations described earlier.

4. Checking the validity and analysis of a truss

One can conclude from the embedded knowledge of the
representation whether the engineering problem is solvable.
In other words, before the analysis process starts, check in
the terminology of logic, whether the diagram representing
the system has a well-formed syntax and hence is a WFF.
Consider for example a truss, shown as a diagram which
defines the topology and geometry of the elements. The
well-formedness of the topology is a necessary condition
for rigidity of the truss and hence stability of the structure
with its supports, but is however not sufficient. The relative
angles between the members, which define the geometry of
the truss, must also be such that they do not lead to compu-
tational singularities. It is noteworthy that both checking the
validity of and analyzing the truss are based on the
embedded knowledge of the same representation, which in
this case is graph theory.

4.1. Checking the validity of a truss

The common rule for a truss to be just-stiff [8] is that it
should be all triangulated and there should be 2× v 2 3
elements,v being the number of vertices. Fig. 4 shows a
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just-stiff truss with 2× v 2 3 elements but is not all trian-
gulated, and is considered a special case. A better rule, with
no special cases, is needed, and is described later.

In the corresponding graphG� (V,E) for the truss, every
vertex corresponds to a pin-joint, and every edge to a rod, as
shown for example in Fig. 5. The word topology refers to
the data as to which vertices exist in the graph and which are
neighbors, meaning that they are the end points of the same
edge. The process of checking whether the topology of a
truss satisfies the condition that the truss is rigid, is by use of
the Laman theorem [9]. The truss will have a well-formed
topology if in the corresponding graph, every subgraphG0

satisfies

e0 # 2 × v0 2 3: �7�
Checking Eq. (7) requires exponential time, while the

embedded knowledge leads us to use known algorithms
which are efficient and of proved correctness. In this case,
the truss has a well-formed topology, thus satisfying a
necessary condition for its rigidity, if and only if (iff),
when doubling each edge in turn, the graph contains two
disjoint spanning trees [10,11]. For this problem there is a
known greedy algorithm which has polynomial efficiency
[7,12]. If the graph is of the truss only, this criterion deter-
mines whether or not the truss alone is rigid; if the graph
includes the reactions, as described in Fig. 5, it will deter-
mine whether the whole system of truss and reactions is
rigid.

4.2. Analysis of determinate and indeterminate trusses

A determinate truss can be solved by equilibrium at each

vertex, whereas for an indeterminate truss information as to
the relation between force and deformation in each element
is needed. For analysis, the truss with its loadings and reac-
tions is represented as a graph. In the language of network
graph theory, force in the truss rod is flow in the graph edge,
and deformation is potential difference. Table 1 summarizes
the Flow Law which is used for statically determinate and
indeterminate trusses and the Potential Law which is used
for statically indeterminate trusses.

First the topology of the truss is checked. After it is found
to have a well-formed topology, the process of analyzing the
truss proceeds. In this process values are assigned to the
variables which represent truss edges. For a determinate
truss there is one variable associated with every edge, corre-
sponding to the flow (or force) in the rod; for an indetermi-
nate truss there is an additional variable, the potential
difference (which is the deformation), for each dimension
(two for a plane truss, three for a space truss). The two laws
which the variables must satisfy are shown in Table 1.

4.2.1. The steps for building the corresponding graph of the
truss

The network graph of a truss, for instance that shown in
Fig. 6, is created as follows:

1. Create a vertex in the graph for every pinned joint in the
truss.

2. Create an edge in the graph, called a “truss edge”, for
every rod; its end vertices correspond to the joints that
connect the rod to the truss. The direction of every truss
edge will be arbitrarily assigned, because if the assign-
ment is wrong the numerical result will be negative and
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Table 1
The flow and potential laws and their details

Flow Law Potential Law

The Law The sum of all the flows in every cutset is equal
to zero

In every circuit, the sum of the potential
differences of the circuit edges is equal to zero

The meaning of the variable Flow! force Potential! displacement
Engineering statement of the law Static theorem Compatibility constraint
Matrix representation Cutset matrix Circuit matrix
Domain of application Determinate and indeterminate trusses Indeterminate trusses



the solution will be correct. The properties of the edge in
the graph include the cosine of the direction of the rod
relative to the arbitrary datum direction chosen for the
analysis in two dimensions (or two direction cosines in
three dimensions).

3. One of the vertices which correspond to a pinned support
will be chosen arbitrarily to be the “reference vertex”,
and will be labeled gray.

4. The following edges for the external forces and reactions
are added – For each external applied force aflow source
edge(or for short a “source edge”) is added, from the
reference vertex to the vertex corresponding to the joint
upon which it acts. For each reaction areaction edgeis
added from the vertex corresponding to the joint at which
the reaction acts, to the reference vertex, one for each
relevant principal direction. For a plane truss, for every
mobile support there will be one corresponding edge, and
for a pinned support there will be two corresponding
edges.

4.2.2. Topological rules for deriving the equations
By using the graph representation, it is easy to automati-

cally assemble the set of equations from its syntax [13, 14].
The central idea of deriving the equations is that each
branch defines a cutset, so in a determinate truss, the corre-
sponding row will contain the number1 1, 2 1 or 0
(depending on the direction of the cutset) multiplied by
the cosine of the rod direction for thex-coordinate, or the
sine for they-coordinate. The same approach is used for an
indeterminate truss, only here we use the resistance graph
representation where the conductivity of the edge which
corresponds to the stiffness of the rod will be included, as
explained in [15,16]. This is shown in Fig. 7, where in
assembling the matrix it should be remembered that for
the principal directions of a mobile reaction, if the force
exists the displacement is zero, and if the displacement
exists the force is zero. The square matrix which appears
in Fig. 7(e) is the stiffness matrix, where in locationij
appears the sum of the stiffnesses of the edges which are
both in cutseti and cutsetj. In locationii appears the sum of

all the rod stiffnesses which are in cutseti. For example, in
location ‘12’ the element ‘2 G8’ appears because ‘8’ is the
only edge which is in both the first two cutsets. The minus
sign shows that edge 8 is directed differently relative to each
cutset. In this graph representation of trusses the conductiv-
ity (stiffness) of an edge is a 2× 2 matrix for plane trusses,
3 × 3 for space trusses. The dimensions of the conductivity
matrix in the resistance graph are derived from the Hooke’s
Law, which states:F�e� � G�e� × d�e�; where G�e� �
��A�e� × E�e��=L�e�� and d(e) is the rod deformation. As
the flows and the potential differences are two dimensional
in plane trusses, the deformation can be written as a linear
combination of the displacements:d � Dx cos�a�1
Dy sin�a� and after applying this to Hooke’s Law, we get

F�e� � G�e��Dx cos�a�1 Dy sin�a��:
When writing this equation for each coordinate for a single
rod e, we get

F�e�x
F�e�y

 !
� G�e� cos2�a� cos�a� sin�a�

cos�a� sin�a� sin�a�

 !
D�e�x
D�e�y

 !

� G�e�
D�e�x
D�e�y

 !

whereG(e) is a 2× 2 matrix which appears in Fig. 7(e).

5. Checking the validity, and analysis of, a planetary
gear system

It may appear a trivial task to know if a gear-box has a
well-defined topology of which gears mesh with which
others, but for a complex gearbox this can be a difficult
problem. A case is known of a half-million dollar complex
gearbox for a large power plant, in which the gear wheels
stripped when first powered up, because its topology was
not well defined, or in other words the syntax of the diagram
that described it was not a WFF (K. Preiss, unpublished).

The same general process explained earlier with trusses,
is now used when dealing with planetary gear systems. First,
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check if the gear system is valid, by checking if the system
has a well-formed topology. In the truss problem, an effi-
cient method was embedded in the representation for check-
ing the necessary and sufficient conditions for deciding the
validity, or rigidity, of the truss. For planetary systems, the
necessary conditions can be found in the book by Erdman
[17]. Based on the information in that book, the conditions
are given later as rules to check if the graph representation
has a well-formed topology. For this, and for the analysis
which follows, the embedded theorems in the graph repre-
senting the gear box, which make use of the spanning tree in
the graph, are used.

5.1. The representation of the planetary system

The most important property to be emphasized in this
representation is the connection between the system
elements, showing how elementi is connected to element
j. The line graph representation is suitable for this purpose,
and therefore, every rotation rod or gear wheel will be repre-
sented by a vertex, and the connection between a pair of
links by an edge. There is a special type of vertex which is
colored gray that corresponds to a link or planet carrier
which maintains the distance between a pair of gear wheels.
In the literature [18] this vertex is called a ‘transfer vertex’.
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Fig. 7. Example of analysis of determinate and indeterminate truss by using the graph representation: (a) is an indeterminate truss, (c) its graph and(e) its
equations derived from the cutset matrix. (b) is a determinate truss, (d) its graph and (f) its equations derived from the cutset matrix.



In the terminology of this paper, the name ‘local reference
vertex’ is more suitable. In this representation, all the turn-
ing edges on one side of the local reference vertex are at the
same level, and those on the opposite side of the local
reference vertex are at a different level (The word “level”
refers to the radial distance from the centerline of the whole
gear system.) (see Fig. 8):

A dashed line
An edge which represents a gear connection.
A double line
An edge which represents a turning connection, and because
the turning edges form a spanning tree they are shown as
double lines. Every double line has a label which represents
the level.
Other information about the labeled edges and the vertices is
added to the representation as follows:
Gray vertices
The distance between each pair of connected gear wheels
must be constant throughout, there being a link or planet
carrier, which maintains this distance. In this representation,
all the turning edges on one side of the local reference vertex
are at the same level, and those on the opposite side of the
local reference vertex are at a different level.

5.2. Checking the validity of the planetary gear system

As explained earlier, the process of checking the validity
of a planetary system becomes a process of checking

whether it has a well-formed topology. The properties of
the graph representation given for this problem are based
on Erdman [17], who published a set of necessary condi-
tions that are used to check whether the system is physically
infeasible. Erdman’s conditions are here rephrased in graph
terms.

Proposition 6. There is no circuit formed exclusively by
turning edges.

Explanation: Suppose in contradiction to the rule, that a
circuit of turning edges exists. There would then be, in the
chain, a set of pin-connected links. A circuit of sizes 1
or 2 is not feasible. A circuit of size 3 is a triangle
which is a locked structure. In a circuit of size 4 or
more the rotatability of the links would not be proportional.
This contradicts the hypothesis that the system is a propor-
tional kinematic chain.

Proposition 7. All the vertices must incident to at least
one turning edge.

Explanation: Every link, which is represented as a vertex,
has at least one element which rotates around it. Between
these two elements, there will be a turning edge in the graph
representation. There may be elements, such as a planet
carrier, for which the vertex that represents them is incident
to at least two turning edges.

Proposition 8. The subgraph of the turning edges forms a
connected subgraph.

Explanation: Each connected gear pair should operate
with a constant radius or center distance. This distance is
maintained by the planet carrier, which is either directly
paired to ground or connected to ground through a sequence
of turning edges.

Proposition 9. In each fundamental circuit, there is one
local reference vertex, and all the edges on one side of the
local reference vertex are at the same level, while all the
edges on the opposite side of the local reference vertex are at
a different level.
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Fig. 8. The planetary mechanism (a) and its line graph representation (b)
(Note: (a) is a standard representation in engineering drawing for a gear
system).

Table 2
Embedded properties of the line graphs which correspond to planetary gear systems

No. Embedded property Derived from Graph theory formulation

1 The subgraph formed by turning edges is a
spanning tree

Propositions 6–8 A subgraph that is connected, with no circuits, and
contains all the vertices, is a spanning tree

2 Every gear edge forms a fundamental
circuit with the spanning tree

Embedded property 1 Adding an edge to the spanning tree forms one and
only one circuit

3 e�T� � v�G�2 1 Embedded property 1 The number of spanning tree vertices is one more
than the number of its edges

4 g�G� � v�G�2 2 From embedded property 1 and Gruebler theory
5 g�G� � e�T�2 1 From embedded properties 3 and 4



Explanation: Each gear pair is located on a different turn-
ing edge level. Because the distance between the centers of
these two gears must be constant, there is one and only one
planet carrier (local reference vertex) in the fundamental
circuit defined by this gear pair.

In addition, in the graph representation syntax, there are
embedded properties, part of which are listed in Table 2.
The Gruebler theory referred to in the table is well known in
theory of machines and can be found for instance in Erdman
[17].

5.2.1. The diagnostic system for the planetary system
With this representation, checking the validity of the

system becomes a problem of checking whether there is a
contradiction between the domain knowledge (in this case
the embedded properties and propositions) and the graph
representation of the given system. For example, the compu-
ter program using this representation with the rules given
before to analyze a gear system [6,19] found that the system
in Fig. 9 is not valid. By knowing which rule was contra-
dicted, but stating the cause of conflict not in graph terms,
but in “user” terms, the program explained why it was not
valid. Following the same approach it is possible to arrange
that the computer program advise the designer what to
change in the gear kinematic chain, in order that it would
be valid.

5.3. Analysis of the velocities in the planetary systems

The variables that represent the angular velocities of the
links must satisfy the Potential Law. So, by using the poten-
tial graph representation, embedded property 2 implies that
every circuit is defined by a gear edge, and that circuit yields
an equation. To solve the system it is necessary that the
number of variables equals the number of equations. This
is so because the number of variables is equal toe(T) which
according to embedded property 5 of Table 2 is equal to
number of equations plus the data for the driving link. Fig.
10 shows an example of this analysis where from each
circuit an equation is derived. For example, Fig.10(c)
shows the equation derived from the circuit with vertices
‘1,4,2’, which is defined by chord ‘12’. In this circuit, the

reference vertex is ‘4’, so going along this circuit from
vertex ‘4’, applying the Potential Law, we get:v1=4 × i12 1
v4=2 � 0; wherei12 is the gear ratio between gear wheels 1
and 2. As the transmission between these two gear wheels is
external, the sign of the ratio is negative, and we get:
v1=4�2�Z1=Z2��1 v4=2 � 0; where Zi is the number of
teeth in gear wheeli. The number of gear teeth is propor-
tional to the radius or a circumference of the wheel.

6. Application to other engineering systems

In this paper, a method was explained while solving two
engineering problems, using the knowledge embedded in
the graph theory representation. This representation can be
used in other fields of engineering which today seem to
belong to disjoint engineering domains. For example, analy-
sis of dynamic systems, as shown in Fig. 11, is based on the
cutset and circuit properties which were explained in Table
1 for trusses. As a result analysis of indeterminate trusses
and dynamic systems become similar.

This paper showed how embedded engineering

O. Shai, K. Preiss / Artificial Intelligence in Engineering 13 (1999) 273–285282

Fig. 9. Example of topological analysis of a planetary gear system, with the computer program output shown. (Note: The system is not valid because there is
contradiction with Proposition 9, because in circuits {6,0,3} and {6,0,3,4} there is no local reference vertex. The explanation to the user is:the connection
between wheels 6 and 3 is not legal because the distance between their centers is zero. The same problem occurs with the connection between wheels 6 and 4.)

Fig. 10. Example of analysis of a planetary gear system.



knowledge is derived from the properties embedded in the
graph representation, and can be used to derive the engi-
neering equations of the systems. By using this method, new
algorithms can also be derived for many problems from the
embedded properties of the representations. For example,
Shai [6] shows how the known best first search algorithm
used in artificial intelligence [1] is derivable from the
embedded properties in the Discrete Linear Programming
(DLP) representation. Moreover, in the LP representation,
by using the embedded “primal dual” algorithm, a new
algorithm was derived [6] to find the maximum external
force that can be applied to a general truss constructed
from ideal elastoplastic elements.

7. Reasoning by analogy based on the embedded
knowledge

There are many other applications in this direction of
research. This section will introduce briefly how one can
reason by analogy based on the connection between the
syntaxes of the representations. As an example, the equa-
tions for analyzing a determinate truss are derived from the
flow graph representation and the velocity equations for
mechanisms are derived from the potential graph represen-
tation [6]. Because the cutset and circuit are dual [12], one
can derive the relation that the flow and potential graphs are
dual. The dual to a plane graph (a graph embedded in a plane
such that no edge crosses another) has a vertex for each face

of the original graph, and an edge which crosses each edge
of the original graph at right angles. Given the plane
graph of a mechanism one can therefore draw its plane truss
dual, and vice versa. Fig. 12 shows a mechanism (a) that is
dual to a truss (b), and graphs (c) and (d) show the process of
deriving the mechanism from the truss using the dual
connection between their corresponding graphs.

The duality between trusses and mechanisms can be used
in many directions. For example, one can deduce the solva-
bility property of a mechanism by checking its dual truss.
An instance is Fig.13(b) that shows a mechanism which
satisfies the Gruebler theorem [17] and can be divided
into legal kinematic chains. But, in the dual truss, it is
transparent that it is not rigid, so one can conclude that
the corresponding mechanism is not legal. Indeed, to the
surprise of three human experts it was found that this
mechanism in the geometry of Fig. 13 is actually locked
in that geometry. In the terminology of Simon [3], looking
for a proper representation not only makes the solution
transparent but also makes transparent whether or not the
diagram showing the engineering system is well defined.

Other results of this project have included successful use
of these reasoning methods in high school classes, where
students have assimilated the experience of using several
representations to solve, or reason about, an engineering
system. In the last decade over 300 high school students
have successfully attained a much better-than-usual grasp
of both mathematics and physics by using a variety of repre-
sentations. We postulate that this success is partially owing
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Fig. 11. Example of analysis of a dynamic system using the graph representation: (a) a dynamic system, (b) the graph, (c) equations derived from the
representation.



to the use of multiple approaches and the ability to switch
seamlessly from one representation to its analogy. Confir-
mation of this hypothesis awaits experiments with trial
groups to investigate the related cognitive process.

The representations developed and used, for which a
series of papers is now in preparation, increase the
available knowledge about the theory behind various
engineering systems, both because of the added under-
standing available from any one representation, and the
information generated by investigation of analogies
between representations.

8. Concluding remarks

Simon’s observation on the usefulness of a mathematical
representation which is isomorphic to the elements of an
engineering system was shown by the use of the discrete

representations of graph theory, matroids and linear
programming [6]. This paper showed results only for the
network graph theory representation, where the cutset
syntax or the flow graph representation was used to solve
truss structures, and the circuit or potential graph represen-
tation syntax used to solve planetary gear systems. Using the
graph theory representation enables application of graph
theory which is a representation with properties and algo-
rithms which are known and with proven properties. Among
these are efficient, low complexity, and hence useful algo-
rithms. Computational systems based on these will not only
be provably correct, but will enable efficient computation on
large systems with many elements.

Using mathematical representations with properties
embedded in the representation which match physical prop-
erties of engineering systems, enables the development of
computational reasoning and analysis systems for engineer-
ing analysis, based on mathematically proven properties of
the representation, with algorithms which have proven prop-
erties. The approach produced interesting overall perspec-
tives of the engineering systems, and when the same
representation is applicable to different systems, opened
new possibilities for reasoning by analogy.

The engineering knowledge embedded in the syntax of
the graph representation enables one to explicitly and
systematically determine if the diagram defining a given
engineering system (in this paper a truss or planetary gear
system) is a WFF. If it is a WFF, the given system is a valid
initial state for analysis and reasoning, using algorithms of
proven properties and complexities. If it is not, the system
will either have an invalid solution or will be insolvable.
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Fig. 12. Example of the duality between a mechanism and a determinate
truss: (a) the mechanism, (b) the truss, (c) the graph of the mechanism, (d)
the graphs of the truss and mechanism shown superimposed.

Fig. 13. Example of not-rigid truss and its corresponding dual mechanism: (a) the not-rigid truss, (b) the corresponding dual mechanism.
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